Energy security plays a major role for satellites and space stations due to their isolated places of operation. Since solar energy is often used to operate these spacecraft, reliable energy storage systems are crucial to compensate for fluctuations in direct solar radiation. These storage systems need to have a very long service life as well as a high operational safety in order to sustainably reduce resource-intensive replacement missions as well as hazards for humans and equipment. However, the battery systems currently used in spacecraft have significant deficits in these areas. That’s why, with »SpaceFlow«, a new energy storage concept for space applications is being presented, which completely fulfils the requirements. »SpaceFlow« is an incomparably long-lasting, charge-cycle-stable, safe and reliable redox flow battery system based on porous metal foam electrodes and zinc-polyiodide electrolytes. The innovative design allows the pressure-stable yet flexible battery cells to be integrated directly into the spacecraft support structures, so that, in addition to energy storage, other functions such as module stiffening or thermal management can be realised with an efficient use of space.


  • Very long service life and theoretically unlimited cycle stability
  • Particularly high operational safety and environmentally neutral cell chemistry
  • Very efficient use of space with multiple applications

Fraunhofer Institute for Environmental,
Safety, and Energy Technology UMSICHT
Jan Girschik

This site uses Cookies

Please accept cookies and tracking on this site for the best experience.

If you deny the use of cookies and tracking on this site, we will save that in a necessary cookie. You will lose access to personalised content and may not have the best experience on this website.

Please see our Privacy Policy for detailed information on how we process your personal data. You can withdraw your consent at any time and demand information about your data as well as the correction, access to or deletion of it.

To protect your privacy, we block cookies and tracking scripts until you consent with the usage.

We use cookies and tracking scripts to offer additional functions, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners who may combine it with other information that you’ve provided to them or that they’ve collected from your use of their services. 

You are able to change or withdraw your consent anytime. 

About Cookies
Cookies are small text files that can be used by websites to make a user’s experience more efficient.
The law states that we can store cookies on your device if they are strictly necessary for the operation of this site. For all other types of cookies we need your permission. This site uses different types of cookies. Some cookies are placed by third party services that appear on our pages.
Learn more about who we are, how you can contact us and how we process personal data in our Privacy Policy.

Necessary cookies help make a website usable by enabling basic functions like page navigation and access to secure areas of the website. Also, your consent with or denial of additional cookies and tracking scripts is stored in a necessary cookie.
The website cannot function properly without these cookies.

Marketing cookies are used for personalisation and tracking users across websites and devices. These cookies help us to display relevant content and ads for the individual user.

Marketing services used on this site:
On this site, we use cookies from:

  • Mautic

Tracking cookies help us to better understand the behaviour of our visitors. We track your interaction on this and across other websites and devices to improve the user’s experience on our site.

Tracking services used on this site:

  • Mouseflow
This site uses Cookies

Please choose:



If you deny, we will save this information in a necessary cookie and accept your wish.